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The polarization ofjellium by a fixed proton impurity at 0 K is determined for 
an electron density range from metallic to dilute using the quantum Monte 
Carlo algorithm. Preliminary results show the correct H -  binding limit for the 
impurity in a dilute electron gas. The screening indicates transitions from two- 
to one-electron binding and from localized to delocalized electrons as the jellium 
density increases. The results are compared to density functional calculations. 
Pair distribution functions, Friedel oscillations, and binding energies are 
discussed. 

KEY W O R D S :  Jellium; proton impurity; Friedel oscillations; quantum 
Monte Carlo. 

1. I N T R O D U C T I O N  

The addition of a proton (H atom) to a host electronic system is the sim- 
plest example of an impurity in a metal. At low electronic density, the H 
atom is expected to attract a second electron, forming a H -  system. As the 
density increases, the second electron is no longer bound and the impurity 
acts as a neutral H atom weakly polarizing the medium. At metallic den- 
sities, the H atom dissociates into a proton and an electron. Nonlinear 
screening occurs in the system, since the metallic electrons are strongly per- 
turbed by their interaction with the bare Coulomb potential of the proton. 
In this study, the quantum Monte Carlo algorithm has been used to 
investigate the effects of a proton in jellium--an electron gas model for the 
metal with a charge-neutralizing uniform positive background. 

The impurity-in-jellium model has been studied using density 
functional theory. ~1) This method has had various degrees of success in 
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applications to a number of atomic, molecular, and solid state problems. 
The density functional approach reduces the quantum many-body problem 
to a single-particle Schr6dinger equation. Energies generated by this 
method are therefore one-particle eigenvalues which do not have an exact 
physical interpretation as spectral values or system energies. The method 
yields only self-consistent solutions to the system of interest, instead of 
strict bounds on the energies. Further, actual calculations using this 
approach involve the local density approximation (LDA) or a first-order 
gradient correction to the LDA, resulting in an approximate effective 
exchange-correlation potential which is valid only for slowly varying elec- 
tronic densities. (2~ 

Two different density functional approaches to the impurity problem 
have been used, the standard Hohenberg-Kohn-Sham method (3-5) and a 
qualitative technique involving quasiatoms. (6) The quasiatom method 
treats the impurity and electronic screening cloud as a unit. It uses the 
uniform density approximation, a variant of the LDA, and gives estimates 
of the change in energy caused by the addition of an impurity. It is unclear 
whether the LDA is valid for the proton-in-metal problem, where electron 
densities are large and rapidly varying near the proton. Density functional 
self-consistency is difficult to achieve for the system, due to strong pertur- 
bations in the electronic charge caused by the bare Coulomb force. The 
method fails in applications to atomic systems, such as the H atom, due to 
improper cancellation of the self-energy term with the appropriate piece of 
the approximate exchange-correlation potential, leading to instability of 
negative ions in the LDA. (7) 

Due to the limitations of density functional methods and especially of 
the LDA approximation, a study of the impurity problem using a first- 
principles solution of the Schr6dinger equation is of interest. The quantum 
Monte Carlo algorithm (8) solves the many-body problem exactly within 
statistical error bars, including all of the correlation energy, rather than 
approximately by reduction to a set of one-particle equations. The method 
has successfully resolved questions on properties and phase transitions in a 
variety of systems, including the electron gas (Wigner crystallization), (9) 
liquid and solid helium, (1~ chemical molecules, (m bulk and molecular 
hydrogen, (~2) and metallic lithium. (13) 

2. Q U A N T U M  M O N T E  CARLO A L G O R I T H M  

The quantum Monte Carlo algorithm involves several stages of 
progressively greater accuracy: variational, fixed-node diffusion, and 
Green's function simulations, and the released node Green's function 
method. The first three yield strict upper bounds to the ground-state 
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energy, while the released node method provides exact answers within 
statistics. In this preliminary study, the variational and fixed-node 
algorithms were used to study the screening effects of a proton in jellium. A 
summary of the algorithm follows, along with a description of the treat- 
ment of the proton impurity system. 

Variationally, the total energy of a system with Hamiltonian H is 
given by the minimum with respect to the set of all possible trial functions 
~ r  of the expectation value, 

E = Min ~ gtrH gtr (1) 

In practice, a limited subset of trial functions are selected and minimized 
with respect to a number of parameters. The result is an upper bound on 
the energy that is dependent upon the nature of the trial wave function. In 
the variational phase of the quantum Monte Carlo method, the wave 
function is described by an ensemble of configurations each consisting of a 
set of particle coordinates. The Metropolis Monte Carlo algorithm is then 
used to sample the coordinate configurations and evaluate expectation 
values for the quantities of interest3 ~4) This phase of the calculation selects 
good trial functions and provides initial configurations for the diffusion or 
Green's function simulations which follow. The form of the trial function is 
discussed below. 

The diffusion Monte Carlo algorithm computes a more accurate 
solution of the Schr6dinger equation. (m The Schr6dinger equation in 
imaginary time is treated as a diffusion equation. The many-body wave 
function ~ satisfies 

H ~ ( R , t ) = [ -  ~ h 2 V ? + V ( R ) - E r ]  gqR, t) (2) 
/=1 2m ' 

where R = (rl, r2,... , rN) is the 3N-dimensional vector of the electronic coor- 
dinates r ,  t is the imaginary time, and 

N e 2 
V(I~)= 2 7~--Z Z:r176 (3) 

x 

i < j fJ i r i~  

is the potential energy of the impurity and jellium, using standard 
Coulomb interactions. The sums run over the electronic coordinates i,j 
with r•-= Ire-DJ and ri~ = Jr e -  GI, where G is the location of the impurity. 
ET is a constant trial energy, which is subtracted from the potential energy 
for computational convenience. The kinetic term in the Schr6dinger 
equation (2) is stochastically represented as standard diffusion with 
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diffusion constant h2/2m. The potential and trial energy terms act as 
branching, generating a birth-and-death process. The solution converges 
exponentially to the ground state. 

The many-body wave function gt can be interpreted as the density of 
diffusing particles as long as it is everywhere of one sign. This is clearly not 
the case for fermions, where the many-body wave function possesses nodal 
surfaces in 3N space [defined by 7J(R) = 0]. However, this difficulty can be 
overcome by introducing a trial wave function gJr whose nodes act as 
absorbing barriers to the diffusion process. This fixed-node method 
constrains the many-body wave function to have the approximate nodal 
surface of gtr, leading to an upper-bound criterion on the ground-state 
energy. In principle, the nodal surfaces could be varied to obtain the best 
upper bound on the energy, although in practice it is difficult to 
parametrize ~u T in a systematic fashion. For the electron gas, the depen- 
dence upon the location of the nodes of the trial wave function has been 
shown to be weak. ~ However, for an accurate upper bound, ~ r  should be 
chosen as close to the true ground-state wave function as is feasible. The 
released-node Green's function algorithm eliminates the constraint on the 
trial function nodal surface to obtain the true ground-state energy of the 
system. 

The stochastic solution of the diffusion equation is performed on an 
initial ensemble of several hundred configurations of particle coordinates 
generated by the variational Monte Carlo run. For solids, a finite 
simulation box or supercell with periodic boundary conditions is used. The 
long-range Coulomb interaction energies are evaluated by Ewald sum- 
mation. 

The quantum Monte Carlo method yields results whose accuracy is 
determined statistically within the simulation. The algorithm in principle 
works for all two-body potentials, crystal phases, and elements. The 
method has so far been practical only for the light elements due to the 
required computer time. The limitations of the algorithm involve the finite 
size of the simulation box, difficulties in determining small energy differen- 
ces, the upper-bound approximation of the fixed-node method for treating 
fermion statistics, and the transient nature of the released-node Green's 
function step. 

Trial wave function. The standard form for the trial wave function ~u r 
that has been successful in previous studies consists of the product of a 
Slater determinant of single-particle orbitals multiplied by a pair-product 
Jastrow factor J: 

~ r =  det Iq~o -+ ] det Iq~l J (4) 
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where ~b~j are the one-particle wave functions in the Slater determinant, 
with the superscripts plus and minus denoting the two possible spin states. 
The determinants provide the required fermion antisymmetry. The Jastrow 
factor incorporates two-body correlation effects 

N 

and involves a sum of the electron-impurity, ui~, and the electron-electron, 
uij, pair correlation terms. These terms exactly satisfy the cusp conditions: 
the singularities of the wave function for zero pair separation due to the 
Coulombic divergence of the potential. The random phase approximation 
(RPA) ~4) is typically used for the long-range behavior of the Jastrow 
terms. 

In this study, all the densities investigated were below the Wigner 
crystallization regime, so plane waves were employed as the Slater deter- 
minant states of the trial function for the background jellium. The number 
ofjellium electrons per simulation box was selected to obtain a closed shell 
structure for the plane wave states, in order to reduce the number depen- 
dence of the simulations. Electrons localized about the impurity were 
treated as Gaussians with parametrized widths. Such simple forms have 
been adequate in previous applications to the electron gas, ~ metallic 
hydrogen, (12) and lithium. (13) 

The variational algorithm evaluates the trial wave function energy. In 
this step, the electrons are forced into localized or delocalized states, 
depending on the choice of Slater determinant states. In contrast, the dif- 
fusion results are limited only by the fixed-node approximation and allow 
the electrons to localize or delocalize in order to minimize the energy. 

3. R E S U L T S  

The Schr6dinger equation for a jellium system with a proton impurity 
was solved using the variational and fixed-node diffusion algorithms. For a 
given electron gas density, systems with jellium electrons in plane wave 
states and no proton, a proton and an added localized electron, a proton 
and and an added delocalized electron, and a proton and two localized 
electrons were simulated. The additional electrons were added in order to 
maintain the same jellium density at large distances from the impurity 
proton. For the case of two added electrons, a correction for the periodic 
images was implemented in order to compensate for the net charge of the 
system. 

Calculations were performed on a cubic supercell simulation box with 
periodic boundary conditions, the impurity being located at a fixed 
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position. The impurity was present as one copy per periodic cell, so correc- 
tions based on the finite simulation box size must be determined. The boxes 
must be of sufficient size so that the effects of the impurity are negligible at 
the box boundaries. 

The impurity problem requires considerable numerical accuracy 
because it involves small energy values which are the differences between 
large system energies. The energy for the addition of the impurity, which 
will be called the impurity energy, is given by 

and 

A E  ~ = E N  + H - -  E N (6a) 

A E H -  = E N  + H - --  E N  (6b) 

where E N + t t  and EN+H- are the energies of the systems with N jellium 
electrons, an impurity proton, and either one or two additional electrons, 
respectively. In density functional theory, the impurity energy is 

A g d f  t = E N +  1 [ - / ' / ( r ) ]  - -  E N [ n ( r ) ]  (6c) 

where E N +  1 is the energy of a system with an impurity of charge 1 and 
N + 1 electrons and E u is the energy of the jellium system with N electrons, 
both of which are functionals of the electron density n(r). In density 
functional calculations performed so far, it has not been possible to directly 
determine the difference between the H and H state of the impurity. 

Quantum Monte Carlo calculations of the proton in jellium were 
performed over a density range from r, = 1.0 to r s=  25.0 for systems of 
54-electron jellium, 54-electron jellium with a proton and an additional 
delocalized electron, 54-electron jellium with a proton and one localized 
electron, and 54-electron jellium with a proton and two localized electrons. 
At low densities (r, > 100), the jellium system forms a Wigner lattice ~9~ and 
the added H atom would be expected to combine at some lattice site with 
an electron to form an H - .  An isolated H atom has a binding energy 

- 1.05 Ryd. At low fluid densities, the quantum Monte Carlo results show 
that the H -  is the preferred ground state of the impurity (the system of 
lowest energy at that density) with AE H-= -1.04 Ryd at r s=  25. Density 
functional theory fails in the low-density limit, as discussed earlier. 

Preliminary variational results are shown in Fig. 1, which plots the 
total system energies versus density for medium to metallic r~. There is a 
minimum in the system energy at r, ~4.0. For low densities (r s > 7) the 
ground state favors two localized electrons, while at metallic densities 
(r~ < 3) delocalized electrons are preferred. Although difficult to see on the 
scale of the plot, the calculations show changes in the preferred ground- 
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Fig. 1. System energy versus density in units of r, for (O)  the electron gas, ( �9 the electron 
gas plus an impurity proton and delocalized electron, ( x ) the electron gas plus an impurity 
proton and a localized electron, and ( + )  the electron gas plus an impurity proton and two 
localized electrons. The energies are in Rydbergs. 

state system in the density range 4 < r, < 6 from two to one to no bound 
electrons. Further runs are required to determine the exact transition 
points. 

Table I lists the impurity energies AE H and AE ~- from quantum 
Monte Carlo and AEdrt from density functional calculations [Eqs. (6)]. 
Figure 2 plots the quantum Monte Carlo values, showing a crossing of the 
curves for two- and one-electron localization at 5 < r  s < 6. The density 
functional method does not allow a direct determination of the nature of 
electronic binding to the impurity. However, a negative slope of the 
impurity energy AEaft as a function of density syggests an overscreening of 
the impurity and may be interpreted as a precursor to a negative ion. 
Results from density functional calculations (~) give a negative slope for 
values greater than rs = 4.6, which agrees approximately with the crossing 
of the curves for the H and H systems obtained by quantum Monte 
Carlo. The density functional quasiation slope theorem (6) implies that a 
minimum in the impurity energy curve AEdft versus density should occur at 
the density where the mean potential vanishes. Neither our calculations nor 
standard density functional calculations (3'4) show this minimum (Table I). 

Also listed in Table I are the density functional binding energies of the 
system defined a s  E b = 2eb, where eb is the one-electron eigenvalue of the 
system. Significant changes in this energy occur when gradient corrections 
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Table I. Impur i ty  Energies for the Electron Gas System a 

r s AEn~ AEp AEna AE~ AEdr t (4) AEaf t ~3) Eb (3) 

1.0 . . . .  0.968 0.938 - -  
2.0 -0 .38 (2) 0.35 (2) -0 .60  (1) -0 .05 (1) -0.854 -0.876 -0.00052 
3.0 -0 .67  (2) -0 .38 (2) . . . .  1.062 -0.0272 
4.0 -0 .72  (1) --0.64 (2) - -  - -  -- 1.086 -- 1.096 -0.0428 
5.0 -0 .78 (2) -0 .73 (2) . . . .  1.098 -0.0462 
6.0 -0 .77  (1) -0 .80  (2) . . . .  1.096 --0.0482 
7.0 -0.81 (2) -0 .82  (2) . . . . .  

10.0 -0 .84  (1) -0 .87  (1) . . . . .  
15.0 -0 .96  (2) -0 .97 (2) . . . . .  
25.0 -0 .97  (2) - 1.04 (2) . . . . .  

a Energies are in Rydbergs, densities in r, = ro/ao, where a0 is the Bohr radius and r0 is defined 
in terms of the number density of the electrons n = 1/(4r~r3/3). The quantum Monte Carlo 
variational (AE~ and AE vn-) and diffusion (AEna and AEna -) impurity energies and the 
density functional impurity energies (AEdft) from two different calculations (3,4) are defined in 
Eq. (6) in the text. Eb is the density functional binding energy/3~ 

are utilized. The interpretation of the one-electron eigenvalues as physical 
quantities is unproven and calculations have shown that these states are 
too shallow to be interpretable as true bound states. (5) Quantum Monte 
Carlo estimates of the binding energy of the impurity, from the energy dif- 
ference of the system with a proton impurity and a localized electron and a 
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Impurity energy versus density in units of r, for the ( Q )  H -  and ( �9  H systems. The 
line is a spline fit for the H -  system. 
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system with a proton impurity and a delocalized electron, are on the order 
of 10 2 Ryd. This difference is related to the energy required to promote an 
electron from a bound to an unbound state. Better estimates should be 
obtained when more simulations have been performed. 

The variational pair distribution functions are shown in Fig. 3-5. 
Figure 3 shows the electron--electron correlation function ge e-(r) for the 
jellium system (54 electrons) for rs = 4. It exhibits the standard behavior for 
a uniform electron gas--a constant density except for the Pauli principle 
repulsion at r = 0. The electron-proton pair distribution functions ge-p(r) 
for the ground-state system at the densities r s = 4, 6, and 10 are plotted in 
Fig. 4. As expected, the electron density centered on the proton impurity 
increases as the density of the electron gas decreases. An enlarged plot of 
the function in Fig. 5 shows oscillations about the uniform electron gas 
background. The amplitude of the oscillations increase with decreasing 
density. Since the pair distribution function ge-p(r) is defined as the 
probability of finding an electron at a distance r from the impurity, the 
oscillation nodal structure is directly related to the Friedel oscillations in 
the number density. 

Friedel oscillations (15) have the functional form 

6n(r) = A cos(2kvr  + q~)/r 3 (7) 

where 3n(r) is the excess charge density, ~b is a phase shift determining the 
first node, kv  is the Fermi wave vector, and A is an amplitude normalizing 
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Fig, 3. Electron-electron pair distribution function g~-~-(r) for r~=4 for the electron gas 
( 5 4  e l e c t r o n s ) .  



1230 S u g i y a m a  et  aL 
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Electron-proton pair distribution function ge-p(r) for the ground-state systems at 
densities (--) rs=4 , ( . . . )  6, and (--) 10. 

the function to 1.0 for a uniform electron gas. Table II shows the first node 
r.Ode of the displaced density for Friedel oscillations from a density aft 
functional calculation 14) and the half-period 6rn~ [Eq, (7)]. 
Quantum Monte Carlo values are also given for the first node r n~ and the 
half-period 6r~ ~ of the pair distribution ge-p(r) oscillations. The period of 
the pair distribution oscillations is on the same order as the Friedel period. 

Fig. 5. 
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Electron-proton pair distribution function ge-p(r) for the ground-state systems at 
densities (--) rs=4, ( , . . )  6, and (--) 10, showing the Friedel oscillations. 
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Table II. First Node rdf tn~ (4) and Half -Per iod 6 r  n~ - - - -  1/kF of the Displaced 
Density for Friedel Oscillations 6n( r )=A cos(2kFr)q))/r 3 Compared with 

First Node r n~ and Hal f -Per iod 6rnv ~ of Pair Distribution Oscillations from 
Quantum Monte  Carlo Calculations" 

r ,  ~ r  n~ = (Tz2/18)~/3r~ r~t ae (~rnv ~ r~ n~ 

1 .0  0 . 8 1 8 5  2 . 8 8  - -  - -  

2 . 0  1 . 6 3 7 0  2 . 3 7  - -  - -  

3 . 0  2 . 4 5 5 5  - -  - -  - -  

4 . 0  3 . 2 7 3 9  3 . 3 0  4 . 5  5. 

5 . 0  4 . 0 9 2 4  - -  - -  - -  

6 . 0  4 . 9 1 0 9  - -  6 . 0  6. 

1 0 . 0  8 . 1 8 4 8  - -  1 0 . 0  8.  

a L e n g t h s  a r e  i n  u n i t s  o f  a . u .  

The r "~ values are slightly larger than the density functional results. 
With better statistics it can be determined whether there are significant 
differences in these quantities. 

4. DISCUSSION AND CONCLUSIONS 

More diffusion and selected released-node Green's function runs must 
be performed before the quantum Monte Carlo algorithm can be used to 
assess the accuracy of the density functional approach. These simulations 
will generate better statistics and, more importantly, results which are not 
dependent on the exact form of the trial wave function. Preliminary 
diffusion calculations indicate that the localized electron system energies 
are lowered relative to the delocalized system energies, reflecting the con- 
vergence of the diffusion simulations to the correct electronic configuration. 
This will affect the transition points and minima of the energy curves. 
However, the results are not expected to change qualitatively. 

There is a significant energy drop between the variational and dif- 
fusion energies, indicating that the trial function is not of an optimal form. 
The inadequacy of the RPA choice for the Jastrow factor is not surprising, 
as the strong screening effects due to the proton should significantly affect 
the two-body correlation terms. The Jastrow factor should be optimized 
variationally to incorporate more Qf the pair correlation energies. This will 
also speed up convergence of the energies. 

Dependence of the results on the number of particles in the simulation 
box must be taken into account by extrapolation to the infinite-number 
limit, determined from simulations for several supercell sizes at several 
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densities. ~91 The number dependence should depend primarily on the 
number of nonlocalized electrons. Systems of 54 jellium electrons polarized 
by a proton impurity will also be studied. 

Our preliminary results show that the quantum Monte Carlo 
algorithm yields physically reasonable results from extreme low density 
(the correct H limit) through the metallic range for the impurity in 
jellium system. The impurity energy curves can be interpreted to determine 
a transition from H to H-type binding. The pair distribution functions 
show the correct density-dependent behavior and exhibit Friedel 
oscillations. Detailed calculations in the transitional density range are 
underway along with analysis of electron localization, the charge density, 
and screening around the impurity. We hope to extend the applications of 
this method to H2 and positrons in metals. 
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